Thực hiện phép tính:a) \(\left( { - \dfrac{1}{5} + \dfrac{3}{7}} \right):\dfrac{5}{4} + \left( {\dfrac{{ - 4}}{5}
Thực hiện phép tính:
a) \(\left( { - \dfrac{1}{5} + \dfrac{3}{7}} \right):\dfrac{5}{4} + \left( {\dfrac{{ - 4}}{5} + \dfrac{4}{7}} \right):\dfrac{5}{4}\)
b) \({\left( {\dfrac{1}{2}} \right)^5} - {1,5^2} + \dfrac{{31}}{{32}} + 102,25\)
c) \(3.\sqrt {\dfrac{1}{9}} + 1,5.\sqrt {225} \)
d) \(\left( { - 1,5} \right) + 2.\left| {2\dfrac{1}{2}} \right| - 6.\left| {\dfrac{{ - 16}}{3}} \right| + 5.\left| { - 0,3} \right|\)
Quảng cáo
a) Vận dụng tính chất kết hợp của phép nhân và phép cộng tính hợp lí.
b) Tính lũy thừa của một số hữu tỉ: \({\left( {\dfrac{a}{b}} \right)^n} = \dfrac{{{a^n}}}{{{b^n}}}\,\,\left( {b \ne 0;n \in \mathbb{Z}} \right)\)/
Thực hiện các phép toán với các số hữu tỉ.
c) Tính căn bậc hai.
Thực hiện các phép toán với các số hữu tỉ.
d) Vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)
Thực hiện các phép toán với các số hữu tỉ.
a) \(\left( { - \dfrac{1}{5} + \dfrac{3}{7}} \right):\dfrac{5}{4} + \left( {\dfrac{{ - 4}}{5} + \dfrac{4}{7}} \right):\dfrac{5}{4}\)
\(\begin{array}{l} = \left( { - \dfrac{1}{5} + \dfrac{3}{7}} \right).\dfrac{4}{5} + \left( {\dfrac{{ - 4}}{5} + \dfrac{4}{7}} \right).\dfrac{4}{5}\\ = \left( { - \dfrac{1}{5} + \dfrac{3}{7} + \dfrac{{ - 4}}{5} + \dfrac{4}{7}} \right).\dfrac{4}{5}\\ = \left[ {\left( { - \dfrac{1}{5} + \dfrac{{ - 4}}{5}} \right) + \left( {\dfrac{3}{7} + \dfrac{4}{7}} \right)} \right].\dfrac{4}{5}\\ = \left( {\dfrac{{ - 5}}{5} + \dfrac{7}{7}} \right).\dfrac{4}{5}\\ = \left( { - 1 + 1} \right).\dfrac{4}{5}\\ = 0.\dfrac{4}{5} = 0\end{array}\)
b) \({\left( {\dfrac{1}{2}} \right)^5} - {1,5^2} + \dfrac{{31}}{{32}} + 102,25\)
\(\begin{array}{l} = \dfrac{1}{{{2^5}}} - 2,25 + \dfrac{{31}}{{32}} + 102,25\\ = \dfrac{1}{{32}} - 2,25 + \dfrac{{31}}{{32}} + 102,25\\ = \left( {\dfrac{1}{{32}} + \dfrac{{31}}{{32}}} \right) + \left( {102,25 - 2,25} \right)\\ = \dfrac{{32}}{{32}} + 100\\ = 1 + 100\\ = 101\end{array}\)
c) \(3.\sqrt {\dfrac{1}{9}} + 1,5.\sqrt {225} \)
\(\begin{array}{l} = 3.\dfrac{1}{3} + \dfrac{3}{2}.15\\ = 1 + \dfrac{{45}}{2}\\ = \dfrac{2}{2} + \dfrac{{45}}{2}\\ = \dfrac{{47}}{2}\end{array}\)
d) \(\left( { - 1,5} \right) + 2.\left| {2\dfrac{1}{2}} \right| - 6.\left| {\dfrac{{ - 16}}{3}} \right| + 5.\left| { - 0,3} \right|\)
\(\begin{array}{l} = - 1,5 + 2.2\dfrac{1}{2} - 6.\left[ { - \left( {\dfrac{{ - 16}}{3}} \right)} \right] + 5.\left[ { - \left( { - 0,3} \right)} \right]\\ = - 1,5 + 2.\dfrac{5}{2} - 6.\dfrac{{16}}{3} + 5.0,3\\ = - 1,5 + 5 - 32 + 1,5\\ = \left( { - 1,5 + 1,5} \right) + \left( {5 - 32} \right)\\ = 0 + \left( { - 27} \right)\\ = - 27\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com