Thực hiện phép tính:a) \(\left( { - \dfrac{3}{4} + \dfrac{2}{3}} \right):\dfrac{5}{{11}} + \left( { -
Thực hiện phép tính:
a) \(\left( { - \dfrac{3}{4} + \dfrac{2}{3}} \right):\dfrac{5}{{11}} + \left( { - \dfrac{1}{4} + \dfrac{1}{3}} \right):\dfrac{5}{{11}}\)
b) \(\dfrac{{{{27}^{10}}{{.16}^{25}}}}{{{6^{30}}{{.32}^{15}}}}\)
c) \(\left| {\dfrac{3}{5} - \dfrac{1}{{10}}} \right| - \sqrt {\dfrac{{36}}{{25}}} + {\left( {\dfrac{3}{{10}}} \right)^5}:{\left( {\dfrac{3}{{10}}} \right)^4}\)
d) \(\sqrt {144} + \sqrt {49} - 10\sqrt {\dfrac{4}{{25}}} \)
Quảng cáo
a) Thực hiện các phép toán với các số hữu tỉ
b) Vận dụng quy tắc tính lũy thừa của một lũy thừa: Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ: \({\left( {{x^m}} \right)^n} = {x^{m.n}}\).
Vận dụng quy tắc tính thương của hai lũy thừa cùng cơ số: Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia: \({x^m}:{x^n} = {x^{m - n}}\,\left( {x \ne 0;m \ge n} \right)\).
c) Vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)
Tính toán với căn bậc hai của một số thực
Vận dụng quy tắc tính thương của hai lũy thừa cùng cơ số: Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi số mũ của lũy thừa chia: \({x^m}:{x^n} = {x^{m - n}}\,\left( {x \ne 0;m \ge n} \right)\).
d) Tính toán với căn bậc hai của một số thực
a) \(\left( { - \dfrac{3}{4} + \dfrac{2}{3}} \right):\dfrac{5}{{11}} + \left( { - \dfrac{1}{4} + \dfrac{1}{3}} \right):\dfrac{5}{{11}}\)
\(\begin{array}{l} = \left( { - \dfrac{3}{4} + \dfrac{2}{3}} \right).\dfrac{{11}}{5} + \left( { - \dfrac{1}{4} + \dfrac{1}{3}} \right).\dfrac{{11}}{5}\\ = \left( { - \dfrac{3}{4} + \dfrac{2}{3} + \dfrac{{ - 1}}{4} + \dfrac{1}{3}} \right).\dfrac{{11}}{5}\\ = \left[ {\left( { - \dfrac{3}{4} + \dfrac{{ - 1}}{4}} \right) + \left( {\dfrac{2}{3} + \dfrac{1}{3}} \right)} \right].\dfrac{{11}}{5}\\ = \left( {\dfrac{{ - 4}}{4} + \dfrac{3}{3}} \right).\dfrac{{11}}{5}\\ = \left( { - 1 + 1} \right).\dfrac{{11}}{5}\\ = 0.\dfrac{{11}}{5} = 0\end{array}\)
b) \(\dfrac{{{{27}^{10}}{{.16}^{25}}}}{{{6^{30}}{{.32}^{15}}}}\)
\(\begin{array}{l} = \dfrac{{{{\left( {{3^3}} \right)}^{10}}.{{\left( {{2^4}} \right)}^{25}}}}{{{{\left( {2.3} \right)}^{30}}.{{\left( {{2^5}} \right)}^{15}}}} = \dfrac{{{3^{3.10}}{{.2}^{4.25}}}}{{{2^{30}}{{.3}^{30}}{{.2}^{5.15}}}}\\ = \dfrac{{{3^{30}}{{.2}^{100}}}}{{{2^{30}}{{.3}^{30}}{{.2}^{75}}}} = \dfrac{{{2^{100}}}}{{{2^{30 + 75}}}}\\ = \dfrac{{{2^{100}}}}{{{2^{105}}}} = \dfrac{1}{{{2^5}}} = \dfrac{1}{{32}}\end{array}\)
c) \(\left| {\dfrac{3}{5} - \dfrac{1}{{10}}} \right| - \sqrt {\dfrac{{36}}{{25}}} + {\left( {\dfrac{3}{{10}}} \right)^5}:{\left( {\dfrac{3}{{10}}} \right)^4}\)
\(\begin{array}{l} = \left| {\dfrac{6}{{10}} - \dfrac{1}{{10}}} \right| - \dfrac{6}{5} + {\left( {\dfrac{3}{{10}}} \right)^{5 - 4}}\\ = \left| {\dfrac{5}{{10}}} \right| - \dfrac{6}{5} + {\left( {\dfrac{3}{{10}}} \right)^1}\\ = \dfrac{5}{{10}} - \dfrac{{12}}{{10}} + \dfrac{3}{{10}}\\ = \dfrac{{ - 4}}{{10}} = \dfrac{{ - 2}}{5}\end{array}\)
d) \(\sqrt {144} + \sqrt {49} - 10\sqrt {\dfrac{4}{{25}}} \)
\(\begin{array}{l} = 12 + 7 - 10.\dfrac{2}{5}\\ = 19 - 4\\ = 15\end{array}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com