Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm \(x\), biết:

Tìm \(x\), biết:

Trả lời cho các câu 1, 2, 3, 4 dưới đây:

Câu hỏi số 1:
Vận dụng

\(\left( {3{x^2} + 1} \right)\left( {4x + \dfrac{1}{3}} \right) = 0\)

Đáp án đúng là: A

Câu hỏi:589980
Phương pháp giải

a) Giải: \(A\left( x \right).B\left( x \right) = 0\)

Trường hợp 1: Giải \(A\left( x \right) = 0\)

Trường hợp 2: Giải \(B\left( x \right) = 0\)

Giải chi tiết

a) \(\left( {3{x^2} + 1} \right)\left( {4x + \dfrac{1}{3}} \right) = 0\)

Trường hợp 1: \(3{x^2} + 1 = 0\)

Vì \({x^2} \ge 0\) với mọi \(x\) nên \(3{x^2} \ge 0\) với mọi \(x\)

Do đó, \(3{x^2} + 1 \ge 1 > 0\) với mọi \(x\)

Vậy không có \(x\) thỏa mãn \(3{x^2} + 1 = 0\).

Trường hợp 2:

\(\begin{array}{l}4x + \dfrac{1}{3} = 0\\4x = \dfrac{{ - 1}}{3}\\x = \dfrac{{ - 1}}{3}:4 = \dfrac{{ - 1}}{3}.\dfrac{1}{4}\\x = \dfrac{{ - 1}}{{12}}\end{array}\)

Vậy \(x = \dfrac{{ - 1}}{{12}}\)

Đáp án cần chọn là: A

Câu hỏi số 2:
Vận dụng

\({\left( {x - \dfrac{3}{5}} \right)^2} = \dfrac{4}{3}:\dfrac{1}{3}\)

Đáp án đúng là: B

Câu hỏi:589981
Phương pháp giải

b) Giải \({\left[ {A\left( x \right)} \right]^2} = {a^2} = {\left( { - a} \right)^2}\)

Trường hợp 1: \(A\left( x \right) = a\)

Trường hợp 2: \(A\left( x \right) =  - a\)

Giải chi tiết

b) \({\left( {x - \dfrac{3}{5}} \right)^2} = \dfrac{4}{3}:\dfrac{1}{3}\)

\(\begin{array}{l}{\left( {x - \dfrac{3}{5}} \right)^2} = \dfrac{4}{3}.\dfrac{3}{1} = 4\\{\left( {x - \dfrac{3}{5}} \right)^2} = {2^2} = {\left( { - 2} \right)^2}\end{array}\)

Trường hợp 1:

\(\begin{array}{l}x - \dfrac{3}{5} = 2\\x = 2 + \dfrac{3}{5}\\x = \dfrac{{10}}{5} + \dfrac{3}{5}\\x = \dfrac{{13}}{5}\end{array}\)

Trường hợp 2:

\(\begin{array}{l}x - \dfrac{3}{5} =  - 2\\x =  - 2 + \dfrac{3}{5}\\x = \dfrac{{ - 10}}{5} + \dfrac{3}{5}\\x = \dfrac{{ - 7}}{5}\end{array}\)

Vậy \(x \in \left\{ {\dfrac{{13}}{5};\dfrac{{ - 7}}{5}} \right\}\)

Đáp án cần chọn là: B

Câu hỏi số 3:
Vận dụng

\(\left( {x + 2.\sqrt {16} } \right).\left| {2x + 3} \right| = 0\)

Đáp án đúng là: C

Câu hỏi:589982
Phương pháp giải

c) Giải: \(A\left( x \right).B\left( x \right) = 0\)

Trường hợp 1: Giải \(A\left( x \right) = 0\)

Trường hợp 2: Giải \(B\left( x \right) = 0\)

Vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)

Giải chi tiết

c) \(\left( {x + 2.\sqrt {16} } \right).\left| {2x + 3} \right| = 0\)

Trường hợp 1:

\(\begin{array}{l}x + 2.\sqrt {16}  = 0\\x + 2.4 = 0\\x + 8 = 0\\x =  - 8\end{array}\)

Trường hợp 2:

\(\begin{array}{l}\left| {2x + 3} \right| = 0\\2x + 3 = 0\\2x =  - 3\\x =  - 3:2\\x = \dfrac{{ - 3}}{2}\end{array}\)

Vậy \(x \in \left\{ { - 8;\dfrac{{ - 3}}{2}} \right\}\)

Đáp án cần chọn là: C

Câu hỏi số 4:
Vận dụng

\(\left| {x - \dfrac{2}{3}} \right| - 0,75 = 1\dfrac{1}{4}\)

Đáp án đúng là: C

Câu hỏi:589983
Phương pháp giải

d) vận dụng kiến thức giá trị tuyệt đối của một số thực: \(\left| x \right| = \left\{ \begin{array}{l}x\,\,\,\,\,\,khi\,\,\,x > 0\\ - x\,\,\,khi\,\,x < 0\\0\,\,\,\,\,\,\,khi\,\,\,x = 0\end{array} \right.\)

Giải chi tiết

d) \(\left| {x - \dfrac{2}{3}} \right| - 0,75 = 1\dfrac{1}{4}\)

\(\begin{array}{l}\left| {x - \dfrac{2}{3}} \right| - \dfrac{3}{4} = \dfrac{5}{4}\\\left| {x - \dfrac{2}{3}} \right| = \dfrac{5}{4} + \dfrac{3}{4}\\\left| {x - \dfrac{2}{3}} \right| = \dfrac{8}{4} = 2\end{array}\)

Trường hợp 1:

\(\begin{array}{l}x - \dfrac{2}{3} = 2\\x = 2 + \dfrac{2}{3}\\x = \dfrac{6}{3} + \dfrac{2}{3}\\x = \dfrac{8}{3}\end{array}\)

Trường hợp 2:

\(\begin{array}{l}x - \dfrac{2}{3} =  - 2\\x =  - 2 + \dfrac{2}{3}\\x = \dfrac{{ - 6}}{3} + \dfrac{2}{3}\\x = \dfrac{{ - 4}}{3}\end{array}\)

Vậy \(x \in \left\{ {\dfrac{8}{3};\dfrac{{ - 4}}{3}} \right\}\)

Đáp án cần chọn là: C

Quảng cáo

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com