Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác \(ABC\) nhọn, lấy điểm \(M\) là trung điểm của cạnh \(AB\), lấy điểm \(N\) là trung

Câu hỏi số 589985:
Vận dụng

Cho tam giác \(ABC\) nhọn, lấy điểm \(M\) là trung điểm của cạnh \(AB\), lấy điểm \(N\) là trung điểm của cạnh \(AC\). Trên tia đối của tia \(NM\) lấy điểm \(Q\) sao cho \(NM = NQ\). Chứng minh rằng:

a) Hai tam giác \(AMN,CQN\) bằng nhau;

b) \(MB\) song song với \(QC\);

c) \(MN = \dfrac{1}{2}BC\).

Quảng cáo

Câu hỏi:589985
Phương pháp giải

a) Vận dụng định lý: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp cạnh – góc – cạnh (c.g.c).

b) Vận dụng dấu hiệu nhận biết của hai đường thẳng song song.

c) Vận dụng định lý: Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau theo trường hợp cạnh – góc – cạnh (c.g.c).

Vận dụng tính chất trung điểm của đoạn thẳng, tính chất bắc cầu.

Giải chi tiết

a) Vì \(N\) là trung điểm của \(AC\) nên \(AN = NC\)

Xét \(\Delta AMN\) và \(\Delta CQN\) có:

            \(AN = NC\) (chứng minh trên)

            \(\angle ANM = \angle CNQ\) (hai góc đối đỉnh)

            \(NM = NQ\) (giả thiết)

Suy ra \(\Delta AMN = \Delta CQN\,\left( {c.g.c} \right)\)

b) Vì \(\Delta AMN = \Delta CQN\) (chứng minh a), suy ra \(\angle MAN = \angle QCN\) (hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên \(AM//QC\)

Suy ra \(MB//QC\) (điều phải chứng minh)

c) Vì \(\Delta AMN = \Delta CQN\) (chứng minh a), suy ra \(MA = QC\) (hai cạnh tương ứng)

Lại có, \(M\) là trung điểm của \(AB\) nên \(MA = MB\)

Suy ra, \(MB = QC\) (vì cùng bằng \(MA\))

Vì \(MB//QC\) (chứng minh b) nên \(\angle BMC = \angle QCM\) (hai góc so le trong)

Xét \(\Delta BMC\) và \(\Delta QCM\) có:

            \(MB = QC\) (chứng minh trên)

            \(\angle BMC = \angle QCM\) (chứng minh trên)

            \(MC\) là cạnh chung

Suy ra \(\Delta BMC = \Delta QCM\,\left( {c.g.c} \right)\)

\( \Rightarrow BC = QM\) (hai cạnh tương ứng)

Vì \(NM = NQ \Rightarrow MN = \dfrac{1}{2}MQ\)

Do đó, \(MN = \dfrac{1}{2}BC\) (điều phải chứng minh)

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com