Vẽ \(\angle xOy = {50^0}\). Vẽ tia \(Om\) là tia phân giác của góc \(xOy\). Vẽ tia \(On\) là tia đối
Vẽ \(\angle xOy = {50^0}\). Vẽ tia \(Om\) là tia phân giác của góc \(xOy\). Vẽ tia \(On\) là tia đối của tia \(Ox\). Tính góc \(mOn\).
Đáp án đúng là: B
\(Oz\) là tia phân giác của \(\angle xOy\) thì ta có: \(\angle xOz = \angle zOy = \dfrac{{\angle xOy}}{2}\)
\(\angle xOz\) và \(\angle zOy\) là hai góc kề nhau thì ta có: \(\angle xOz + \angle zOy = \angle xOy\).
\(\angle xOz\) và \(\angle zOy\) là hai góc kề bù thì ta có: \(\angle xOy = \angle xOz + \angle zOy = {180^0}\)
Vì \(Om\) là tia phân giác của \(\angle xOy\) nên \(\angle mOy = \dfrac{{\angle xOy}}{2} = \dfrac{{{{50}^0}}}{2} = {25^0}\)
Ta có: \(\angle nOy\) và \(\angle yOx\) là hai góc kề bù nên \(\angle nOy + \angle yOx = {180^0}\)
\(\begin{array}{l} \Rightarrow \angle nOy + {50^0} = {180^0}\\ \Rightarrow \angle nOy = {180^0} - {50^0} = {130^0}\end{array}\)
Ta có: \(\angle nOy\) và \(\angle yOm\) là hai góc kề nhau nên \(\angle nOy + \angle yOm = \angle nOm\)
\( \Rightarrow {130^0} + {25^0} = {155^0} = \angle nOm\)
Vậy \(\angle mOn = {155^0}\)
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com