Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hình học không gian

Câu hỏi số 59396:

Cho tứ diện ABCD có AB = AC = a√2, BD = CD = a √3, BC = 2a, góc tạo bởi hai mặt phẳng (ABC) và (BCD) bằng 450. Tính theo a thể tích khối tứ diện ABCD và khoảng cách từ B đến mặt phẳng (ACD).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:59396
Giải chi tiết

Gọi M là trung điêm BC

từ các tam giác cân ABC, DBC

=> AM ⊥ BC, DM ⊥ BC

từ giả thiết => (\widehat{AM,DM}) = 450  => \widehat{AMD} = 450  hoặc \widehat{AMD} = 1350

TH1: \widehat{AMD} = 450

Sử dụng định lý Pytago trong tam giác vuông ABM và BDM  => AM = a, DM = a√2

Kẻ AH⊥MD tại H. vì BC⊥(ADM) => BC⊥AH=> AH⊥(BCD). Khi đó:

AH = AM sin450  = \frac{a\sqrt{2}}{2}; SBCD = DM.BC.1/2 = a2√2

Suy ra VABCD = \frac{1}{3}AH.SBCD = \frac{a^{3}}{3}

Sử dụng định lý cô sin cho ∆AMD => AD = a => AC2 + AD2 = 3a2 = CD2 => ∆ACD vuông tại A

Suy ra SACD = \frac{1}{2}AC.AD = \frac{a^{2}\sqrt{2}}{2} => d(B,(ACD)) = \frac{3V_{ABCD}}{S_{ACD}} = a√2

TH2.\widehat{AMD} = 1350

Tương tự ta có VABCD = \frac{a^{3}}{3}; d(B,(ACD)) = \frac{a\sqrt{6}}{3} (AD = a√5)

 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com