Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB <AC. Ba đường cao AD, BE, CF của tam giác
Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) và AB <AC. Ba đường cao AD, BE, CF của tam giác ABC (D, E, F là các chân đường cao) đồng quy tại H. Kẻ đường kính AK của đường tròn (O;R). Gọi M là hình chiếu vuông góc của C trên đường thẳng AK.
a) Chứng minh rằng tứ giác BCEF nội tiếp đường tròn.
b) Chứng minh rằng tam giác ABD đồng dạng với tam giác AKC và MD song song với BK.
c) Giả sử hai đỉnh B, C cố định tren đường tròn (O;R) và đỉnh A di động trên cung lớn BC của đờng tròn (O;R). Chứng minh rằng đường thẳng MF luôn đi qua một điểm cố định và tìm vị trí của đỉnh A sao cho diện tích tam giác AEH lớn nhất.
Quảng cáo
a) Vận dụng dấu hiệu nhận biết tứ giác nội tiếp: Tứ giác có hai đỉnh kề cùng nhìn một cạnh dưới các góc bằng nhau là tứ giác nội tiếp.
b) + \(\Delta ABD \sim \Delta ACK\,\,\left( {g.g} \right)\)
+ Vận dụng dấu hiệu nhận biết hai đường thẳng song song
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











