Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \(2{x^2} + \left( {2m - 1} \right)x - m - 1 = 0\) với \(m\) là tham số, biết phương

Câu hỏi số 595536:
Vận dụng

Cho phương trình \(2{x^2} + \left( {2m - 1} \right)x - m - 1 = 0\) với \(m\) là tham số, biết phương trình có hai nghiệm \({x_1},{x_2}\). Tìm \(m\) để biểu thức \(F = 4x_1^2 + 2{x_1}{x_2} + 4x_2^2 - 1\) đạt giá trị nhỏ nhất.

Quảng cáo

Câu hỏi:595536
Phương pháp giải

Phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có hai nghiệm phân biệt \( \Leftrightarrow \Delta  > 0\) (hoặc \(\Delta ' > 0\))

Áp dụng hệ thức Vi – ét, tính được \({x_1} + {x_2};{x_1}.{x_2}\) theo \(m\)

Thay vào biểu thức \(F = 4x_1^2 + 2{x_1}{x_2} + 4x_2^2 - 1\) để tìm giá trị nhỏ nhất của biểu thức.

Giải chi tiết

Ta có: \(\Delta  = {\left( {2m - 1} \right)^2} - 4.2\left( { - m - 1} \right)\)\( = 4{m^2} - 4m + 1 + 8m + 8\)\( = 4{m^2} + 4m + 9\)

Để phương trình có hai nghiệm thì \(\Delta  = 4{m^2} + 4m + 9 \ge 0\)

                                                        \( \Leftrightarrow {\left( {2m + 1} \right)^2} + 8 \ge 0\) mọi m (luôn đúng)

Do đó với mọi \(m\) phương trình luôn có hai nghiệm \({x_1},{x_2}\)

Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - 2m + 1}}{2}\\{x_1}{x_2} = \dfrac{{ - m - 1}}{2}\end{array} \right.\)

Ta có:

\(F = 4x_1^2 + 2{x_1}{x_2} + 4x_2^2 - 1\)

\( = 4\left( {x_1^2 + x_2^2} \right) + 2{x_1}{x_2} - 1\)

\( = 4{\left( {{x_1} + {x_2}} \right)^2} - 8{x_1}{x_2} + 2{x_1}{x_2} - 1\)

\( = 4{\left( {{x_1} + {x_2}} \right)^2} - 6{x_1}{x_2} - 1\)

\(\begin{array}{l} = 4{\left( {\dfrac{{ - 2m + 1}}{2}} \right)^2} - 6\left( {\dfrac{{ - m - 1}}{2}} \right) - 1\\ = {\left( { - 2m + 1} \right)^2} - 3\left( { - m - 1} \right) - 1\end{array}\)

\( = 4{m^2} - 4m + 1 - 3\left( { - m - 1} \right) - 1\)

\( = 4{m^2} - m + 3\)

\( = {\left( {2m} \right)^2} - 2.2m.\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} + 3\)

\( = {\left( {2m - \dfrac{1}{4}} \right)^2} + \dfrac{{47}}{{16}} \ge \dfrac{{47}}{{16}}\) với mọi m (vì \({\left( {2m - \dfrac{1}{4}} \right)^2} \ge 0\) với mọi \(m\))

Do đó giá trị nhỏ nhất của \(F\) là \(\dfrac{{47}}{{16}}\) khi \(2m - \dfrac{1}{4} = 0 \Leftrightarrow 2m = \dfrac{1}{4} \Leftrightarrow m = \dfrac{1}{4}:2 = \dfrac{1}{8}\)

Vậy F đạt giá trị nhỏ nhất là \(\dfrac{{47}}{{16}}\)khi \(m = \dfrac{1}{8}\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com