Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho số tự nhiên \(n\) thỏa mãn \(C_n^0 + C_n^1 + C_n^2 = 11.\) Số hạng chứa \({x^7}\) trong khai triển

Câu hỏi số 598992:
Vận dụng

Cho số tự nhiên \(n\) thỏa mãn \(C_n^0 + C_n^1 + C_n^2 = 11.\) Số hạng chứa \({x^7}\) trong khai triển của \({\left( {{x^3} - \dfrac{1}{{{x^2}}}} \right)^n}\) bằng:

Quảng cáo

Câu hỏi:598992
Phương pháp giải

- Sử dụng công thức \(C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\), giải phương trình \(C_n^0 + C_n^1 + C_n^2 = 11\) tìm \(n\).

- Sử dụng khai triển nhị thức Niu-tơn \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \).

- Để tìm số hạng chứa \({x^7}\) ta cho số mũ của \(x\) trong khai triển bằng \(7\).

Giải chi tiết

Ta có: \(C_n^0 + C_n^1 + C_n^2 = 11{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {n \ge 2,{\mkern 1mu} {\mkern 1mu} n \in \mathbb{N}} \right)\)

\(\begin{array}{*{20}{l}}{ \Leftrightarrow 1 + n + \dfrac{{n\left( {n - 1} \right)}}{2} = 11}\\{ \Leftrightarrow 2 + 2n + {n^2} - n = 22}\\{ \Leftrightarrow {n^2} + n - 20 = 0}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{n = 4{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)}\\{n = {\rm{\;}} - 5{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {ktm} \right)}\end{array}} \right.}\end{array}\)

Khi đó ta có \({\left( {{x^3} - \dfrac{1}{{{x^2}}}} \right)^4} = {\left( {{x^3} + \dfrac{{ - 1}}{{{x^2}}}} \right)^4} = 1.{\left( {{x^3}} \right)^4} + 4.{\left( {{x^3}} \right)^3}.\dfrac{{ - 1}}{{{x^2}}} + 6.{\left( {{x^3}} \right)^2}.{\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)^2} + 4\left( {{x^3}} \right).{\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)^3} + {\left( {\dfrac{{ - 1}}{{{x^2}}}} \right)^4}\)

Vậy số hạng chứa \({x^7}\) trong khai triển trên là \(4.{\left( { - 1} \right)^1}{x^7} = {\rm{\;}} - 4{x^7}\).

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com