Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4}

Câu hỏi số 601526:
Vận dụng

Tìm giá trị thực của tham số \(m\) để hàm số \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\) đạt giá trị cực đại tại \(x = 3\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:601526
Phương pháp giải

Hàm số bậc ba đạt cực đại tại \({x_0} \Leftrightarrow \left\{ \begin{array}{l}y'\left( {{x_0}} \right) = 0\\y''\left( {{x_0}} \right) < 0\end{array} \right.\).

Giải chi tiết

Ta có: \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3 \Rightarrow y' = {x^2} - 2mx + {m^2} - 4 \Rightarrow y'' = 2x - 2m\).

Hàm số bậc ba \(y = \dfrac{1}{3}{x^3} - m{x^2} + \left( {{m^2} - 4} \right)x + 3\) đạt giá trị cực đại tại \(x = 3\) \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( 3 \right) = 0\\y''\left( 3 \right) < 0\end{array} \right.\).

\( \Leftrightarrow \left\{ \begin{array}{l}{3^2} - 2m.3 + {m^2} - 4 = 0\\2.3 - 2m < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 6m + 5 = 0\\m > 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 1\\m = 5\end{array} \right.\\m > 3\end{array} \right.\,\,\,\, \Leftrightarrow m = 5\).

Chọn D

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com