Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

\(P = {{2{n^3} - 3{n^2} + 3n - 1} \over {n - 1}}\)

Tìm \(n \in Z\)  để \(P \in Z\)

 

Câu hỏi số 610020:
Vận dụng cao

\(P = {{2{n^3} - 3{n^2} + 3n - 1} \over {n - 1}}\)

Tìm \(n \in Z\)  để \(P \in Z\)

 

Quảng cáo

Câu hỏi:610020
Phương pháp giải

Đặt phép chia.

- Để thỏa mãn điều kiện của đề bài thì số dư cuối cùng phải chia hết cho số chia. Suy ra, số chia là ước của số dư cuối cùng.

- Lập bảng thử chọn để chọn ra giá trị của thỏa mãn.

Giải chi tiết

\(2{n^3} - 3{n^2} + 3n - 1 = \left( {2{n^2} - n + 2} \right)\left( {n - 1} \right) + 1\)

Để \(2{n^3} - 3{n^2} + 3n – 1\) chia hết cho n - 1 thì 1  chia hết cho n - 1.

\( \Rightarrow \left( {n - 1} \right) \in \left\{ {1, - 1} \right\}\)

vậy  \(n = \left\{ {0,2} \right\}\) để  \(P \in Z\)

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com