Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tam giác ABC vuông góc tại A có góc B = 53°. a) Tính góc C. b) Trên cạnh BC, lấy điểm D sao cho

Câu hỏi số 610690:
Vận dụng

Cho tam giác ABC vuông góc tại A có góc B = 53°.

a) Tính góc C.

b) Trên cạnh BC, lấy điểm D sao cho BD = BA. Tia phân giác của góc B cắt cạnh AC ở điểm E.

Chứng minh rằng: ΔBEA = ΔBED.

c) Qua C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F.

Chứng minh: ΔBHF = ΔBHC.

d) Chứng minh rằng: ΔBAC = ΔBDF và 3 điểm D, E, F thẳng hàng.

Quảng cáo

Câu hỏi:610690
Phương pháp giải

Chứng minh 3 điểm A, M, N thẳng hàng trước, sau đó chứng minh AM = AN

Giải chi tiết

a. Tính góc C Xét ΔBAC, ta có:

\(\angle A + \angle B + \angle C = {180^\circ }\)

⇒ \(\angle C = {180^0} - (\angle A + \angle B)\)

⇒ \(\angle C = {180^0} - \left( {{{90}^0} + {{53}^0}} \right) = {37^0}\)

b. ΔBEA = ΔBED Xét ΔBEA và ΔBED, ta có:

BE cạnh chung.

\(\angle ABE = \angle DBE\) (BE là tia phân giác của góc B)

BD = BA (gt)

⇒ ΔBEA = ΔBED (c – g – c)

c. ΔBHF = ΔBHC

Xét ΔBHF và ΔBHC, ta có: BH cạnh chung.

\(\angle ABH = \angle DBH\) (BE là tia phân giác của góc B)

\(\angle BHF = \angle BHC = {90^\circ }\) (gt)

⇒ ΔBHF = ΔBHC (cạnh huyền – góc nhọn)

⇒ BF = BC (cạnh tương ứng)

d. ΔBAC = ΔBDF và D, E, F thẳng hàng

Xét ΔBAC và ΔBDF, ta có: BC = BF (cmt) Góc B chung.

BA = BC (gt)

⇒ ΔBAC = ΔBDF

⇒ \(\angle BAC = \angle BDF\)

Mà: \(\angle BAC = {90^\circ }\) (gt)

Nên: \(\angle BDF = {90^\circ }\) hay BD ⊥ DF (1)

Mặt khác: \(\angle BAE = \angle BDF\)  (hai góc tương ứng của  ΔBEA = ΔBED)

Mà: \(\angle BAE = {90^\circ }\) (gt)

Nên: \(\angle BDE = {90^\circ }\) hay BD ⊥ DE (2)

Từ (1) và (2), suy ra: DE trùng với DF Hay 3 điểm D, E, F thẳng hàng.

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com