Trên tập hợp số phức, xét phương trình \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (m là tham số
Trên tập hợp số phức, xét phương trình \({z^2} - 2\left( {m + 1} \right)z + {m^2} = 0\) (m là tham số thực). Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt \({z_1},\,\,{z_2}\) thỏa mãn \(\left| {{z_1}} \right| + \left| {{z_2}} \right| = 2\) ?
Đáp án đúng là: C
Quảng cáo
Tính \(\Delta '\).
Xét 2 trường hợp:
TH1: Phương trình có 2 nghiệm thực phân biệt.
TH2: Phương trình có 2 nghiệm phức phân biệt
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












