Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right){\rm{d}}x}  = 2\);

Câu hỏi số 624292:
Nhận biết

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) và có \(\int\limits_0^1 {f\left( x \right){\rm{d}}x}  = 2\); \(\int\limits_1^3 {f\left( x \right){\rm{d}}x}  = 6\). Tính \(I = \int\limits_0^3 {f\left( x \right){\rm{d}}x} \).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:624292
Phương pháp giải

Tính chất tích phân: \(\int\limits_a^b {\left[ {m.f\left( x \right) \pm n.g\left( x \right)} \right]dx}  = m\int\limits_a^b {f\left( x \right)dx}  \pm n\int\limits_a^b {g\left( x \right)dx} \,\,\left( {m,n \in \mathbb{R}} \right)\).

Giải chi tiết

\(I = \int\limits_0^3 {f\left( x \right){\rm{d}}x}  = \int\limits_0^1 {f\left( x \right){\rm{d}}x}  + \int\limits_1^3 {f\left( x \right){\rm{d}}x}  = 2 + 6 = 8\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com