Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu số nguyên \(x\) thoả mãn điều kiện \(\left( {{7^x} - 49} \right)\left( {{\rm{log}}_3^2x -

Câu hỏi số 651239:
Vận dụng

Có bao nhiêu số nguyên \(x\) thoả mãn điều kiện \(\left( {{7^x} - 49} \right)\left( {{\rm{log}}_3^2x - 7{\rm{lo}}{{\rm{g}}_3}x + 6} \right) < 0\) ?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:651239
Phương pháp giải

Giải bất phương trình \(A.B < 0 \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}A > 0\\B < 0\end{array} \right.\\\left\{ \begin{array}{l}A < 0\\B > 0\end{array} \right.\end{array} \right.\).

Giải chi tiết

Điều kiện: \(x > 0\)

\(\left( {{7^x} - 49} \right)\left( {{\rm{log}}_3^2x - 7{\rm{lo}}{{\rm{g}}_3}x + 6} \right) < 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{7^x} - 49 > 0}\\{{\rm{log}}_3^2x - 7{\rm{lo}}{{\rm{g}}_3}x + 6 < 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{{7^x} - 49 < 0}\\{{\rm{log}}_3^2x - 7{\rm{lo}}{{\rm{g}}_3}x + 6 > 0}\end{array}} \right.}\end{array}} \right.\) \(\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{{7^x} > 49}\\{1 < {\rm{lo}}{{\rm{g}}_3}x < 6}\end{array}} \right.}\\{ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{7^x} < 49}\\{\left\{ {\begin{array}{*{20}{c}}{x > 2}\\{3 < x < {3^6}}\end{array}} \right.}\end{array}} \right.}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{\rm{lo}}{{\rm{g}}_3}x < 1}\\{{\rm{lo}}{{\rm{g}}_3}x > 6}\end{array}} \right]\left\{ {\begin{array}{*{20}{c}}{x < 2}\\{\left[ {\begin{array}{*{20}{c}}{0 < x < 3}\\{x > {3^6}}\end{array}} \right.}\end{array}} \right.} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{0 < x < 2}\\{3 < x < {3^6}}\end{array}} \right.\)

Mà \(x \in \mathbb{Z} \Rightarrow x \in \left\{ {1;4;5; \ldots ;728} \right\}\)

Vậy có 726 số thỏa mãn.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com