Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(S\) là tập hợp các số phức \(z = a + bi\left( {a,b \in \mathbb{R}} \right)\) thỏa mãn \(\left| {z

Câu hỏi số 652452:
Vận dụng cao

Gọi \(S\) là tập hợp các số phức \(z = a + bi\left( {a,b \in \mathbb{R}} \right)\) thỏa mãn \(\left| {z + \overline z \left|  +  \right|z - \overline z } \right| = 4\) và \(ab > 0\). Xét \({z_1}\) và \({z_2}\) thuộc \(S\) sao cho \(\dfrac{{{z_1} - {z_2}}}{{1 + i}}\) là số thực dương. Giá trị nhỏ nhất của biểu thức \(\left| {{z_1}} \right| + \left| {{z_2} - 2i} \right|\) bằng

Đáp án đúng là: A

Quảng cáo

Câu hỏi:652452
Phương pháp giải

nn

Giải chi tiết

Đầu tiên ta có \(z = a + bi\left( {a,b \in \mathbb{R}} \right)\) thì khi đó \(|z + \overline z \left|  +  \right|z - \overline z \left| { = 4 \Leftrightarrow \left| a \right| + \left| b \right| = 2,ab} \right\rangle 0\).

Do \(\dfrac{{{z_1} - {z_2}}}{{1 + i}}\) là số thực dương nên khi \(M\left( {{z_1}} \right),N\left( {{z_2}} \right)\) thì ta có:

\(\overrightarrow {OM}  - \overrightarrow {ON}  = \overrightarrow {NM}  = k\left( {1 + i} \right) = k\overrightarrow {OE} \left( {k \in {\mathbb{R}^ + }} \right)\)với \(E\left( {1;1} \right)\).

Do \(ab > 0\) nên tập hợp các điểm \(M,N\) thuộc \(S\) biểu diễn như hình vẽ sau:

Gọi \(F\left( { - 2; - 2} \right)\) là điểm đối xứng với \(O\) qua đoạn thẳng \(CD\)

Suy ra \(P = \left| {{z_1}} \right| + \left| {{z_2} - 2i} \right| = MO + NA = NO + NA = NF + NA \ge FA = 2\sqrt 5 \)

Dấu bằng xảy ra khi và chỉ khi \(M \equiv {M_0} = AF \cap CD\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com