Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \dfrac{1}{3}{x^3} - {m^2}{x^2} + 16x + 2023\) (với \(m\) là tham số). Số giá trị nguyên

Câu hỏi số 663064:
Thông hiểu

Cho hàm số \(y = \dfrac{1}{3}{x^3} - {m^2}{x^2} + 16x + 2023\) (với \(m\) là tham số). Số giá trị nguyên của tham số \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\) là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:663064
Phương pháp giải

Hàm số đồng biến trên \(\mathbb{R}\) khi \(y' \ge 0\,\,\forall x\)

Giải chi tiết

\(y = \dfrac{1}{3}{x^3} - {m^2}{x^2} + 16x + 2023 \Rightarrow y' = {x^2} - 2{m^2}x + 16\)

\(\begin{array}{l} \Rightarrow y' \ge 0\,\,\forall x \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta ' \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\{m^4} - 16 \le 0\end{array} \right. \Leftrightarrow {m^4} - 16 \le 0\\ \Leftrightarrow \left( {{m^2} - 4} \right)\left( {{m^2} + 4} \right) \le 0\\ \Leftrightarrow {m^2} - 4 \le 0 \Leftrightarrow {m^2} \le 4 \Leftrightarrow  - 2 \le m \le 2\end{array}\)

Mà m nguyên nên \(m \in \left\{ { - 2, - 1,0,1,2} \right\}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com