Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{{x^2} + 1}}{{x\sqrt

Câu hỏi số 673807:
Vận dụng cao

Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \dfrac{{{x^2} + 1}}{{x\sqrt {{x^4} + 1} }}\) với \(x > 0\) thỏa mãn \(F\left( 1 \right) = 1\). Biết \(F\left( 2 \right) = \ln \left( {\dfrac{{a + \sqrt b }}{{2\sqrt 2 }}} \right) + 1\) với \(a,\,\,b,\,\,c\) là các số nguyên dương. Tính \(a + b\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:673807
Giải chi tiết

Ta có: \(\int {f\left( x \right)dx}  = \int {\dfrac{{\left( {{x^2} + 1} \right)dx}}{{x\sqrt {{x^4} + 1} }} = \int {\dfrac{{1 + \dfrac{1}{{{x^2}}}}}{{\sqrt {{x^2} + \dfrac{1}{{{x^2}}}} }}dx = \int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{\sqrt {{{\left( {x - \dfrac{1}{x}} \right)}^2} + 2} }}} } } \)

Đặt \(u = x - \dfrac{1}{x} \Rightarrow du = \left( {1 + \dfrac{1}{{{x^2}}}} \right)dx\)

Khi đó \(\int {f\left( x \right)dx}  = \int {\dfrac{{du}}{{\sqrt {{u^2} + 2} }}} \)

Đặt \(t = u + \sqrt {{x^2} + 2}  \Rightarrow dt = \left( {1 + \dfrac{u}{{\sqrt {{u^2}}  + 2}}} \right)du \Rightarrow dt = \dfrac{{\sqrt {{u^2} + 2}  + u}}{{\sqrt {{u^2} + 2} }}du \)

\(\Rightarrow dt = \dfrac{{tdu}}{{\sqrt {{u^2} + 2} }} \Rightarrow \dfrac{du}{\sqrt {u^2 + 2}} = \dfrac{{dt}}{t}\)

Khi đó \(\int {f\left( x \right)dx}  = \int {\dfrac{{dt}}{t} = \ln \left| t \right| + C = \ln \left| {u + \sqrt {{u^2} + 2} } \right| + C = \ln \left| {\left( {x - \dfrac{1}{x}} \right) + \sqrt {{{\left( {x - \dfrac{1}{x}} \right)}^2} + 2} } \right| + C}\)

Mà \(F\left( 1 \right) = 1 \Rightarrow C = 1 - \ln \sqrt 2 \)

Do đó \(F\left( x \right) = \left| {\ln \left( {x - \dfrac{1}{x}} \right) + \sqrt {{{\left( {x - \dfrac{1}{x}} \right)}^2} + 2} } \right| + 1 - \ln \sqrt 2 \)

Vậy \(F\left( 2 \right) = \ln \left( {\dfrac{3}{2} + \dfrac{{\sqrt {17} }}{2}} \right) + 1 - \ln \sqrt 2  = \ln \left( {\dfrac{{3 + \sqrt {17} }}{{2\sqrt 2 }}} \right) + 1\)

Vậy \(a = 3,\,\,b = 17 \Rightarrow a + b = 20\)

Chọn B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com