Nếu \({\log _8}a + {\log _4}{b^2} = 5\) và \({\log _4}{a^2} + {\log _8}b = 7\) thì giá trị của \(ab\)
Nếu \({\log _8}a + {\log _4}{b^2} = 5\) và \({\log _4}{a^2} + {\log _8}b = 7\) thì giá trị của \(ab\) là:
Đáp án đúng là: A
Quảng cáo
Sử dụng công thức: \({\log _{{a^m}}}{b^n} = \dfrac{m}{n}{\log _a}b\,\,\left( {0 < a \ne 1,\,\,b > 0} \right)\) đưa về ẩn \({\log _2}a\), \({\log _2}b.\)
Giải hệ phương trình tìm \({\log _2}a\), \({\log _2}b\) từ đó tìm a, b.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












