Cho tam giác \(ABC\) vuông tại \(A(AB < AC)\) nội tiếp đường tròn tâm \(O\). Trên đường tròn
Cho tam giác \(ABC\) vuông tại \(A(AB < AC)\) nội tiếp đường tròn tâm \(O\). Trên đường tròn \(\left( O \right)\) lấy điểm \(D\) khác phía \(A\) so với đường thảng \(BC(BD > AC)\). Qua \(B\) kẻ đường thẳng \(d\) song song với \(CD\). Đường thẳng \(d\) cắt đường thẳng \(AC\) tại \(E\), cắt đường tròn \(\left( O \right)\) tại \(F\) (\(F\) khác \(B\)).
a) Gọi \(J\) là trung điểm của \(EC\). Chứng minh rằng 4 điểm \(A,F,O,J\) cùng nằm trên một đường tròn.
b) Đường thẳng \(OE\) cắt đường thẳng \(AD\) tại \(I\). Chứng minh rằng \(\angle {IBA} = \angle {BDA}\).
c) Trên tia \(BD\) lấy điểm \(M\) sao cho \(BM = BA\). Đường thẳng \(AM\) cắt đường thẳng \(DC\) tại \(N\), đường thẳng \(BN\) cắt \(\left( O \right)\) tại \(K\) (\(K\) khác \(B\)). Gọi \(H\) là hình chiếu vuông góc của \(A\) trên \(BC\). Đường thẳng \(BD\) cắt các đường thẳng \(NH,CK\) lần lượt tại \(P,Q\).
Chứng minh rằng \(\dfrac{1}{{PM}} = \dfrac{1}{{MQ}} + \dfrac{1}{{BM}}\).
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












