Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

a) Cho phương trình \({x^2} - 2(m + 1)x + 4m - 3 = 0\), với \(m\) là tham số. Tìm các giá trị của \(m\)

Câu hỏi số 722119:
Vận dụng

a) Cho phương trình \({x^2} - 2(m + 1)x + 4m - 3 = 0\), với \(m\) là tham số. Tìm các giá trị của \(m\) để phương trình có 2 nghiệm phân biệt \({x_1},{x_2}\) sao cho biểu thức \(S = x_1^2 + x_2^2 + \left( {1 + {x_1}} \right)\left( {1 + {x_2}} \right)\) đạt giá trị nhỏ nhất.

b) Hộp sữa dạng hình trụ làm bằng giấy có nắp đậy với bán kính đáy bằng \(5\;{\rm{cm}}\), chiều cao bằng \(20\;{\rm{cm}}\). Biết giá của \(1\;{{\rm{m}}^2}\) giấy để làm hộp sữa là 30000 đồng. Tính chi phí giấy để sản xuất 1000 hộp sữa. (Lấy \(\pi  = 3,14\) và các mép gấp không đáng kể).

Phương pháp giải

a) Áp dụng hệ thức Vi-ét.

b) Áp dụng công thức \({S_{tp}} = 2\pi .{r^2}.h + 2\pi .{r^2}\).

Giải chi tiết

a) Ta có: \(\Delta ' = {\left( {m + 1} \right)^2} - \left( {4m - 3} \right).1 = {m^2} + 2m + 1 - 4m + 3 = {m^2} - 2m + 4 = {\left( {m - 1} \right)^2} + 3 > 0\) \(\forall m\)

Vậy phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2}\).

Áp dụng định lí vi – et ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{b}{a} = 2\left( {m + 1} \right)\\{x_1}.{x_2} = \dfrac{c}{a} = 4m - 3\end{array} \right.\,\,\,\,\left( 1 \right)\)

\(S = x_1^2 + x_2^2 + \left( {1 + {x_1}} \right)\left( {1 + {x_2}} \right)\)

\(S = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} + 1 + {x_1}.{x_2} + {x_1} + {x_2}\)

\(S = {\left( {{x_1} + {x_2}} \right)^2} - {x_1}{x_2} + 1 + \left( {{x_1} + {x_2}} \right)\)

Thay \(\left( 1 \right)\) vào phương trình ta có:

\(\begin{array}{l}S = 4{\left( {m + 1} \right)^2} - \left( {4m - 3} \right) + 1 + 2\left( {m + 1} \right)\\S = 4{m^2} + 8m + 4 - 4m + 3 + 1 + 2m + 2\\S = 4{m^2} + 6m + 10\\S = 4{m^2} + 2.2.\dfrac{3}{2}m + \dfrac{9}{4} + \dfrac{{31}}{4}\\S = {\left( {2m + \dfrac{3}{2}} \right)^2} + \dfrac{{31}}{4} \ge \dfrac{{31}}{4}\forall m \in R\end{array}\)

Vậy giá trị nhỏ thất của \(S\) là \(\dfrac{{31}}{4}\)

Dấu xảy ra khi \(2m + \dfrac{3}{2} = 0 \Leftrightarrow m =  - \dfrac{3}{4}\).

b) Đổi \(5cm = 0,05m;20cm = 0,2m\)

Diện tích giấy làm một hộp sữa là: \({S_{tp}} = 2\pi .{r^2}.h + 2\pi .{r^2} = 2.\pi .0,{05^2}.0,2 + 2.\pi .0,{05^2} = 0,006\pi \left( {{m^2}} \right)\)

Để sản suất 1000 hộp sữa cần: \(0,006.3,14.1000 = 18,84\left( {{m^2}} \right)\)

Chi phí giấy để sản xuất 1000 hộp sữa là: \(18,84.30000 = 565200\)đồng

Câu hỏi:722119

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com