Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({\cos ^2}\left( {2x + \dfrac{\pi }{4}} \right) + {\cos ^2}\left( {x + \dfrac{\pi }{2}}

Câu hỏi số 722762:
Thông hiểu

Cho phương trình \({\cos ^2}\left( {2x + \dfrac{\pi }{4}} \right) + {\cos ^2}\left( {x + \dfrac{\pi }{2}} \right) = 1\).

Đúng Sai
a) a) Phương trình đã cho được viết lại như sau \({\sin ^2}\left( {2x + \dfrac{\pi }{4}} \right) = {\cos ^2}\left( {x + \dfrac{\pi }{2}} \right)\).
b) b) Phương trình có 4 họ nghiệm
c) c) Một họ nghiệm của phương trình đã cho \(x = \dfrac{\pi }{{12}} + k\dfrac{\pi }{3}(k \in \mathbb{Z})\).
d) d) Nghiệm dương nhỏ nhất của phương trình là \(\dfrac{\pi }{4}\)

Đáp án đúng là: Đ; Đ; S; Đ

Quảng cáo

Câu hỏi:722762
Giải chi tiết

Đáp án: a đúng, b đúng, c sai, d đúng.

\({\cos ^2}\left( {2x + \dfrac{\pi }{4}} \right) + {\cos ^2}\left( {x + \dfrac{\pi }{2}} \right) = 1\)

\(\begin{array}{l} \Leftrightarrow {\cos ^2}\left( {x + \dfrac{\pi }{2}} \right) = 1 - {\cos ^2}\left( {2x + \dfrac{\pi }{4}} \right)\\ \Leftrightarrow {\cos ^2}\left( {x + \dfrac{\pi }{2}} \right) = {\sin ^2}\left( {2x + \dfrac{\pi }{4}} \right)\\ \Leftrightarrow {\sin ^2}x = {\sin ^2}\left( {2x + \dfrac{\pi }{4}} \right) \Leftrightarrow \left[ \begin{array}{l}\sin \left( {2x + \dfrac{\pi }{4}} \right) = \sin x\\\sin \left( {2x + \dfrac{\pi }{4}} \right) =  - \sin x\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x + \dfrac{\pi }{4} = x + k2\pi \\2x + \dfrac{\pi }{4} = \pi  - x + k2\pi \\\sin \left( {2x + \dfrac{\pi }{4}} \right) = \sin \left( { - x} \right)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k2\pi \\x = \dfrac{\pi }{4} + \dfrac{{k2\pi }}{3}\\2x + \dfrac{\pi }{4} =  - x + k2\pi \\2x + \dfrac{\pi }{4} = \pi  + x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \dfrac{\pi }{4} + k2\pi \\x = \dfrac{\pi }{4} + \dfrac{{k2\pi }}{3}\\x = \dfrac{{ - \pi }}{{12}} + \dfrac{{k2\pi }}{3}\\x = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\end{array}\)

Đáp án cần chọn là: Đ; Đ; S; Đ

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com