Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \left( {x + 4}
Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = \left( {x + 4} \right)\left( {x + 3} \right),\forall x \in \mathbb{R}\).
| Đúng | Sai | |
|---|---|---|
| a) Hàm số nghịch biến trên khoảng \(\left( { - 4, - 3} \right)\). | ||
| b) Hàm số đồng biến trên khoảng \(\left( { - \infty , - 5} \right)\). | ||
| c) Hàm số nghịch biến trên khoảng \(\left( {0;1} \right)\). | ||
| d) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\). |
Đáp án đúng là: Đ; Đ; S; Đ
Quảng cáo
+ Nếu trên \((a;b)\) đồ thị hàm số \(y = f'(x)\) nằm phía trên trục hoành thì \(f'(x) > 0\) nên hàm số \(y = f(x)\) đồng biến trên khoảng \((a;b)\).
+ Nếu trên \((a;b)\) đồ thị hàm số \(y = f'(x)\) nằm phía dưới trục hoành thì \(f'(x) < 0\) nên hàm số \(y = f(x)\) nghịch biến trên khoảng \((a;b)\).
+ Nếu đồ thị hàm số \(y = f'(x)\) cắt trục hoành tại điểm \({x_0}\) thì \(f'({x_0}) = 0\).
Đáp án cần chọn là: Đ; Đ; S; Đ
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













