Một đường cong trên mặt phẳng tọa độ có phương trình mô tả \(x\) và \(y\) theo tham số \(t\)
Một đường cong trên mặt phẳng tọa độ có phương trình mô tả \(x\) và \(y\) theo tham số \(t\) như sau: \(\left\{ {\begin{array}{*{20}{c}}{x = 4{e^{2t}}{\rm{ }}}\\{y = 5{e^{ - t}}\cos 2t}\end{array},{\rm{ }}t \in \left[ { - \dfrac{\pi }{4};{\rm{ }}\dfrac{\pi }{4}} \right]} \right..\)
Khi đó đạo hàm của hàm số \(y\left( x \right)\) là
Đáp án đúng là: C
Quảng cáo
Sử dụng đạo hàm của hàm số hợp.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












