Hình giải tích trong không gian
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P): x+3y-z+4=0, (Q): x-2z-3=0, (R): y-2z=0. Gọi d là giao tuyến của hai mặt phẳng (Q) và (R). Viết phương trình đường thẳng ∆ nằm trong (P) và vuông góc với đường thẳng d tại giao điểm của d và (P).
Đáp án đúng là: A
Quảng cáo
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


⇔
=> M(1;-2;-1)
(1;0;-2),
(0;1;-2) lần lượt là VTPT của (Q) và (R). Khi đó đường thẳng d có VTCP là
=
=(2;2;1)
(1;3;-1) là VTPT của (P).
=
=(-5;3;4)
=
=
.










