Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Dựa vào thông tin dưới đây để trả lời 2 câu hỏi sau:     Người ta dùng hai

Dựa vào thông tin dưới đây để trả lời 2 câu hỏi sau:

    Người ta dùng hai loại nguyên liệu để chiết xuất ít nhất 200 kg hóa chất A và 24 kg hóa chất B. Từ mỗi tấn nguyên liệu loại I có thể chiết xuất được 40 kg hóa chất A và 2,4 kg hóa chất B. Từ mỗi tấn nguyên liệu loại II có thể chiết xuất được 25 kg hóa chất A và 4 kg hóa chất B. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 8 tấn nguyên liệu loại II. Gọi \(x,y\) (tấn) lần lượt là khối lượng nguyên liệu loại I và loại II đã dùng.

Trả lời cho các câu 1, 2 dưới đây:

Câu hỏi số 1:
Thông hiểu

Hệ bất phương trình biểu thị các điều kiện của bài toán là

Đáp án đúng là: D

Câu hỏi:772183
Giải chi tiết

Điều kiện: \(0 \le x \le 10;0 \le y \le 8\).

Mỗi tấn nguyên liệu loại I có thể chiết xuất được 40 kg hóa chất A, mỗi tấn nguyên liệu loại II có thể chiết xuất được 25 kg hóa chất A và cần chiết xuất ít nhất 200 kg hóa chất A nên ta có bất phương trình:

\(40x + 25y \ge 200\).

Mỗi tấn nguyên liệu loại I có thể chiết xuất được 2,4 kg hóa chất B, mỗi tấn nguyên liệu loại II có thể chiết xuất được 4 kg hóa chất B và cần chiết xuất ít nhất 24 kg hóa chất B nên ta có bất phương trình:

\(2,4x + 4y \ge 24\).

Tóm lại, hệ bất phương trình biểu thị các điều kiện của bài toán là \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 8\\40x + 25y \ge 200\\2,4x + 4y \ge 24\end{array} \right.\).

Đáp án cần chọn là: D

Câu hỏi số 2:
Thông hiểu

Giá mỗi tấn nguyên liệu loại I và loại II lần lượt là 7 triệu đồng và 6 triệu đồng. Chi phí mua nguyên liệu ít nhất là bao nhiêu triệu đồng?

Đáp án đúng là: C

Câu hỏi:772184
Giải chi tiết

Ta có hệ bất phương trình biểu thị các điều kiện của bài toán là \(\left\{ \begin{array}{l}0 \le x \le 10\\0 \le y \le 8\\40x + 25y \ge 200\\2,4x + 4y \ge 24\end{array} \right.\,\,\left( * \right)\).

Gọi \(F\left( {x;y} \right)\) là lợi nhuận bác Hòa thu được từ việc trồng cây ăn trái.

Ta có \(F\left( {x;y} \right) = 7x + 6y\) (triệu đồng).

Biểu diễn miền nghiệm của hệ (*) trên mặt phẳng tọa độ Oxy.

4,8

Miền nghiệm của hệ (*) là tứ giác ABCD, trong đó \(A\left( {0;8} \right),B\left( {2;4,8} \right),C\left( {10;0} \right),D\left( {10;8} \right)\).

Tại \(A\left( {0;8} \right)\): \(F\left( {0;8} \right) = 7.0 + 6.8 = 48\).

Tại \(B\left( {2;4,8} \right)\): \(F\left( {2;4,8} \right) = 7.2 + 6.4,8 = 42,8\).

Tại \(C\left( {10;0} \right)\): \(F\left( {100;0} \right) = 7.10 + 6.0 = 70\).

Tại \(D\left( {10;8} \right)\): \(F\left( {10;8} \right) = 7.10 + 6.8 = 118\).

Vậy chi phí mua nguyên liệu ít nhất là 42,8 triệu đồng.

Đáp án cần chọn là: C

Quảng cáo

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com