Xét các số thực dương $a,b$ thoả mãn $\log_{2}\dfrac{1 - ab}{a + b} = 2ab + a + b - 3$. Mỗi phát biểu
Xét các số thực dương $a,b$ thoả mãn $\log_{2}\dfrac{1 - ab}{a + b} = 2ab + a + b - 3$. Mỗi phát biểu sau đây là đúng hay sai?
| Đúng | Sai | |
|---|---|---|
| a) $a + b = 1 - ab$. | ||
| b) $P = a + b$ đạt giá trị nhỏ nhất tại $a = 2 - b = \dfrac{1 - \sqrt{5}}{2}$. | ||
| c) Giá trị nhỏ nhất của $P = a + b$ bằng $- 1 + \sqrt{5}$. |
Đáp án đúng là: S; S; Đ
Quảng cáo
Đưa về hàm đặc trưng
Đáp án cần chọn là: S; S; Đ
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













