Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tập hợp A = {1,2,3,4,.,20}. Chọn ngẫu nhiên 3 số trong tập hợp A. Tính xác suất để ba số

Câu hỏi số 779855:
Vận dụng

Cho tập hợp A = {1,2,3,4,.,20}. Chọn ngẫu nhiên 3 số trong tập hợp A. Tính xác suất để ba số được chọn không có 2 số tự nhiên liên tiếp.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:779855
Phương pháp giải

Số cách chọn ba số đôi một khác nhau từ A: $n(\Omega) = C_{20}^{3}$.

TH1: Ta chọn số có 3 chữ số tự nhiên liên tiếp

TH2: Chọn ba số có đúng hai chữ số liên tiếp

Giải chi tiết

Số cách chọn ba số đôi một khác nhau từ A: $n(\Omega) = C_{20}^{3}$.

TH1 : Ta chọn số có 3 chữ số tự nhiên liên tiếp :

Chọn phần tử bất kì trong A∖{19;20} : 18 cách chọn.

Với mỗi phần tử được chọn, ta lấy hai phần tử liền kề bên phải : 1 cách chọn.

Vậy có 18 cách chọn 3 phần tử liên tiếp nhau.

TH2 : Chọn ba số có đúng hai chữ số liên tiếp :

Chọn 1 trong hai phần tử {1;19}: 2 cách.

Với mỗi cách chọn phần tử trên, ta có 1 cách chọn phần tử liền sau đó.

Chọn phần tử thứ ba không liên tiếp với 2 phần tử đã chọn : 17 cách.

Chọn 1 phần tử trong tập {2;3;4;.;18} : 17 cách.

Với mỗi cách chọn trên, ta có 1 cách chọn phần tử thứ hai liền sau nó.

Để chọn phần tử thứ 3 không liên tiếp, cứ 1 cặp 2 phần từ đã chọn ở trên thì ta có: 16 cách chọn phần tử thứ 3.

Vậy có 17.2+17.16 cách chọn 3 phần tử có đúng hai chữ số liên tiếp.

$P = \dfrac{C_{20}^{3} - 18 - 17.2 - 17.16}{C_{20}^{3}} = \dfrac{68}{95}$

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com