Hàm Euler của một số nguyên dương N được định nghĩa là số các số
Hàm Euler của một số nguyên dương N được định nghĩa là số các số nguyên dương nhỏ hơn hoặc bằng N và nguyên tố cùng nhau với N, kì hiệu là ϕ(N). Hai số nguyên dương a và b được gọi là nguyên tố cùng nhau nếu ƯCLN(a,b)=1.
Chọn các khẳng định đúng:
Đáp án đúng là: A; C
Quảng cáo
Tìm các số nguyên nhỏ hơn hoặc bằng n và nguyên tố cùng nhau với n.
Đáp án cần chọn là: A; C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












