Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho tam giác ABC. Hãy dựng các điểm M, N sao cho \(\overrightarrow{A M}=\overrightarrow{B C},

Câu hỏi số 822819:
Vận dụng

Cho tam giác ABC. Hãy dựng các điểm M, N sao cho \(\overrightarrow{A M}=\overrightarrow{B C}, \overrightarrow{A N}=\overrightarrow{C B}\). Chọn các khẳng định đúng:

Đáp án đúng là: B; C; D

Quảng cáo

Câu hỏi:822819
Phương pháp giải

Dùng định nghĩa vecto bằng nhau, suy ra các cặp vector có cùng độ lớn và cùng hướng.

Áp dụng dấu hiệu hình bình hành chứng minh tứ giác ABCM và ACBN là hình bình hành.

Từ $\overrightarrow{AM} = \overrightarrow{BC}$ và $\overrightarrow{AN} = \overrightarrow{CB} = -\overrightarrow{BC}$, suy ra hướng của $\overrightarrow{AM}$ và $\overrightarrow{AN}$.

Giải chi tiết

Ta có \(\overrightarrow{A M}=\overrightarrow{B C}\) nên \(\overrightarrow{A M}\) cùng hướng với \(\overrightarrow{B C}\) và \(|\overrightarrow{A M}|=|\overrightarrow{B C}|\).
Vì vậy ABCM là hình bình hành (xem hình vẽ). 
Tương tự, \(\overrightarrow{A N}=\overrightarrow{C B}\) nên \(\overrightarrow{A N}\) cùng hướng với \(\overrightarrow{C B}\) và \(|\overrightarrow{A N}|=|\overrightarrow{C B}|\)
Vì vậy ACBN là hình bình hành (xem hình vẽ).
Từ hình vẽ, ta nhận thấy \(\overrightarrow{A M}, \overrightarrow{A N}\) là hai vectơ đối nhau (A là trung điểm của đoạn thẳng MN).

Đáp án cần chọn là: B; C; D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com