Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Trong không gian $Oxyz$, cho $E\left( {0;3; - 2} \right),F\left( {1;3;2} \right)$. Phương trình tham số của

Câu hỏi số 837159:
Thông hiểu

Trong không gian $Oxyz$, cho $E\left( {0;3; - 2} \right),F\left( {1;3;2} \right)$. Phương trình tham số của đường thẳng đi qua hai điểm $E,F$ có dạng $\left\{ \begin{array}{l} {x = at} \\ {y = b} \\ {z = - 2 + 4t} \end{array} \right.$. Tính $T = 2a + b$.

Đáp án đúng là:

Quảng cáo

Câu hỏi:837159
Phương pháp giải

Viết phương trình qua E, và VTCP $\overset{\rightarrow}{EF}\left( {1;0;4} \right)$

Đường thẳng :$\left\{ \begin{array}{l} {x = x_{0} + at} \\ {y = y_{0} + bt} \\ {z = z_{0} + ct} \end{array} \right.$ đi qua điểm $M_{0}\left( {x_{0};y_{0};z_{0}} \right)$ và nhận vectơ $\overset{\rightarrow}{u}(a;b;c) \neq \overset{\rightarrow}{0}$ làm vectơ chỉ phương

Giải chi tiết

$\left. E\left( {0;3; - 2} \right),F\left( {1;3;2} \right)\Rightarrow\overset{\rightarrow}{EF}\left( {1;0;4} \right) \right.$

Phương trình tham số của đường thẳng đi qua $E\left( {0;3; - 2} \right)$ và VTCP $\overset{\rightarrow}{EF}\left( {1;0;4} \right)$ có dạng $\left\{ \begin{array}{l} {x = t} \\ {y = 3} \\ {z = - 2 + 4t} \end{array} \right.$

Vậy $\left. a = 1;b = 3\Rightarrow 3a + b = 5 \right.$

Đáp án cần điền là: 5

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com