Cho phương trình \(\log _2^2x - \left( {5m + 1} \right){\log _2}x + 4{m^2} + m = 0.\) Biết phương
Cho phương trình \(\log _2^2x - \left( {5m + 1} \right){\log _2}x + 4{m^2} + m = 0.\) Biết phương trình có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} + {x_2} = 165.\) Giá trị của \(\left| {{x_1} - {x_2}} \right|\) bằng:
Đáp án đúng là: 159
Quảng cáo
- Đặt \(t = {\log _2}x\), phương trình trở thành phương trình bậc hai ẩn \(t\).
- Tìm điều kiện để phương trình có 2 nghiệm phân biệt, tìm nghiệm \({t_1},\,\,{t_2}\) theo \(m\), từ đó suy ra nghiệm \({x_1},\,\,{x_2}\) theo \(m\).
- Sử dụng giả thiết \({x_1} + {x_2} = 165\) giải phương trình tìm \(m\), từ đó tính \(\left| {{x_1} - {x_2}} \right|\).
Đáp án cần điền là: 159
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












