Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình nón có góc ở đỉnh \({{60}^{0}},\) diện tích xung quanh bằng \(6\pi {{a}^{2}}.\) Tính thể

Câu hỏi số 212886:
Vận dụng

Cho hình nón có góc ở đỉnh \({{60}^{0}},\) diện tích xung quanh bằng \(6\pi {{a}^{2}}.\)

Tính thể tích \(V\) của khối nón đã cho.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:212886
Phương pháp giải

Sử dụng giả thiết ta lập được một hệ phương trình cho bán kính đáy và độ dài đường sinh. Áo dụng định lý Py-ta-go để tìm được độ dài đường cao của nón. Áp dụng công thức thể tích để tìm thể tích của nón.

Giải chi tiết

Gọi \(r,l\) lần lượt là bán kính đáy và độ dài đường sinh của nón.

Khi đó theo công thức diện tích xung quanh ta có \({{S}_{xq}}=\pi .rl.\) Mặt khác \({{S}_{xq}}=6\pi {{a}^{2}}.\)

Do đó \(rl=6{{a}^{2}}\,\,\left( 1 \right).\)

Hạ đường cao \(AO\) xuống đáy. Khi đó theo giả thiết ta có \(\widehat{IAO}={{30}^{0}}.\)

Trong tam giác vuông \(AIO\) ta có \(\sin \widehat{IAO}=\frac{IO}{IA}\Rightarrow \sin {{30}^{0}}=\frac{r}{l}\Rightarrow l=2r\,\,\left( 2 \right).\)

Từ \(\left( 1 \right)\) và \(\left( 2 \right)\) ta có 

\(\left\{ \begin{array}{l}rl = 6{a^2}\\l = 2r\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}r = a\sqrt 3 \\l = 2a\sqrt 3 \end{array} \right..\)

Áp dụng định lý Py-ta-go trong tam giác vuông \(IAO\) ta nhận được \(A{{O}^{2}}=I{{A}^{2}}-I{{O}^{2}}={{l}^{2}}-{{r}^{2}}={{\left( 2a\sqrt{3} \right)}^{2}}-{{\left( a\sqrt{3} \right)}^{2}}=9{{a}^{2}}\Rightarrow AO=3a.\)

Thể tích khối nón là \(V=\frac{1}{3}.AO.{{S}_{\left( O,r \right)}}=\frac{1}{3}.\left( 3a \right).\pi {{r}^{2}}=a.\pi {{\left( a\sqrt{3} \right)}^{2}}=3\pi {{a}^{3}}.\)

Chọn đáp án C.

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com