Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong tập các số phức, cho phương trình \({{z}^{2}}-6z+m=0,\,\,m\in \mathbb{R}\,\,\left( 1 \right).\) Gọi

Câu hỏi số 213279:
Vận dụng

Trong tập các số phức, cho phương trình \({{z}^{2}}-6z+m=0,\,\,m\in \mathbb{R}\,\,\left( 1 \right).\) Gọi \({{m}_{0}}\) là một giá trị của \(m\) đẻ phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt \({{z}_{1}},{{z}_{2}}\) thỏa mãn \({{z}_{1}}.\overline{{{z}_{1}}}={{z}_{2}}.\overline{{{z}_{2}}.}\) Hỏi trong khoảng \(\left( 0;20 \right)\) có bao nhiêu giá trị \({{m}_{0}}\in \mathbb{N}?\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:213279
Phương pháp giải

Biện luận để tìm trực tiếp nghiệm \({{z}_{1}},{{z}_{2}}.\) Sử dụng giả thiết để tìm ra giá trị \({{m}_{0}}.\)

Giải chi tiết

Viết lại phương trình đã cho thành \({{\left( z-3 \right)}^{2}}=9-{{m}_{0}}.\)

Nếu \({{m}_{0}}=9\Rightarrow z=3.\) Hay phương trình chỉ có một nghiệm. (Loại)

Nếu \({{m}_{0}}<9\) thì phương trình đã cho có hai nghiệm thực \({{z}_{1}}=3-\sqrt{9-{{m}_{0}}},{{z}_{2}}=3+\sqrt{9-{{m}_{0}}}.\)

Do

\(\begin{array}{l}{z_1}.\overline {{z_1}} = {z_2}.\overline {{z_2}} \Leftrightarrow {\left| {{z_1}} \right|^2} = {\left| {{z_2}} \right|^2} \Leftrightarrow {\left( {3 - \sqrt {9 - {m_0}} } \right)^2} = {\left( {3 + \sqrt {9 - {m_0}} } \right)^2}\\ \Leftrightarrow \left[ \begin{array}{l}3 - \sqrt {9 - {m_0}} = 3 + \sqrt {9 - {m_0}} \\3 - \sqrt {9 - {m_0}} = - 3 - \sqrt {9 - {m_0}} \,\,\,\left( {VN} \right)\end{array} \right. \Leftrightarrow \sqrt {9 - {m_0}} = 0 \Leftrightarrow {m_0} = 9\,\,\left( {ktm} \right)\end{array}\)

Nếu \({{m}_{0}}>9\) thì phương trình đã cho có hai nghiệm phức liên hợp là \({{z}_{1}}=3-i\sqrt{{{m}_{0}}-9},{{z}_{2}}=3+i\sqrt{{{m}_{0}}-9}.\)

Khi đó \({{z}_{1}}.\overline{{{z}_{1}}}={{z}_{2}}.\overline{{{z}_{2}}}={{3}^{2}}+{{\left( \sqrt{{{m}_{0}}-9} \right)}^{2}}\)

Do đó \({{m}_{0}}>9\)thỏa mãn yêu cầu bài toán.

Do bài toán đòi hỏi \({{m}_{0}}\in \left( 0;20 \right)\) nên \({{m}_{0}}\in \left\{ 10;11;....;19 \right\}.\)

Vậy có \(10\) giá trị thỏa mãn.

Chọn đáp án D.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com