Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Một lớp học có n học sinh (n > 3). Thầy chủ nhiệm cần chọn ra một nhóm và cần cử ra 1

Câu hỏi số 215166:
Vận dụng cao

Một lớp học có n học sinh (n > 3). Thầy chủ nhiệm cần chọn ra một nhóm và cần cử ra 1 học sinh trong nhóm đó làm nhóm trưởng. Số học sinh trong mỗi nhóm phải lớn hơn 1 và nhỏ hơn n. Gọi T là số cách chọn. Lúc này:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:215166
Phương pháp giải

Thầy chủ nhiệm cần chọn ra một nhóm mà chưa biết nhóm này có bao nhiêu học sinh nên sẽ có các phương án:

PA1: Nhóm có 2 học sinh

PA2: Nhóm có 3 học sinh.

PA3: Nhóm có 4 học sinh.

….

PA(n-2): Nhóm có n – 1 học sinh.

Tính số cách thực hiện của mỗi phương án sau đó áp dụng quy tắc cộng.

Giải chi tiết

Gọi \({A_k}\) là phương án: Chọn nhóm có k học sinh và chỉ định 1 bạn trong k học sinh đó làm nhóm trưởng.

Thầy chủ nhiệm có các phương án: \({A_2},{A_3},{A_4},...,{A_{n - 1}}\)

Ta tính xem \({A_k}\) có bao nhiêu cách thực hiện.

Phương án \({A_k}\) có hai công đoạn:

Công đoạn 1: Chọn k học sinh trong n học sinh có \(C_n^k\) cách chọn.

Công đoạn 2: Chọn 1 học sinh trong k học sinh làm nhóm trưởng có \(C_k^1 = k\) cách.

Theo quy tắc nhân thì phương án \({A_k}\) có \(kC_n^k\) cách thực hiện.

Các phương án \({A_k}\) là độc lập với nhau.

Vậy theo quy tắc cộng ta có: \(T = \sum\limits_{k = 2}^{n - 1} {kC_n^k} \)

Chú ý khi giải

Bài toán này cần áp dụng cả quy tắc nhân và quy tắc cộng nên các em phải phân biệt thật rõ hai quy tắc này.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com