. Định m để phương trình \({{\cos }^{2}}x-2m\cos x+4\left( m-1 \right)=0\) có nghiệm thỏa mãn
. Định m để phương trình \({{\cos }^{2}}x-2m\cos x+4\left( m-1 \right)=0\) có nghiệm thỏa mãn \(-\frac{\pi }{2}<x<\frac{\pi }{2}\)
Đáp án đúng là: B
Quảng cáo
- Đặt \[\cos x=t\). Lưu ý chuyển từ khoảng giá trị của x sang khoảng giá trị của t.
- Đưa về phương trình bậc 2 của t.
- Định m để phương trình có nghiệm t được suy ra ở trên.
Cách giải:
Đáp án cần chọn là: B
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












