Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khai triển \({\left( {1 - 2x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\). Tìm \({a_5}\)

Câu hỏi số 216598:
Vận dụng

Cho khai triển \({\left( {1 - 2x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\). Tìm \({a_5}\) biết \({a_0} + {a_1} + {a_2} = 71.\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:216598
Phương pháp giải

Dùng khai triển Newton để tìm \({a_0},{a_1},{a_2}.\)

Dựa vào tổng \({a_0} + {a_1} + {a_2} = 71\) để  tìm n và suy ra \({a_5}\).

Giải chi tiết

\({\left( {1 - 2x} \right)^n} = {a_0} + {a_1}x + {a_2}{x^2} + ... + {a_n}{x^n}\)

Số hạng tổng quát \(C_n^k{\left( { - 2x} \right)^k} = C_n^k{\left( { - 2} \right)^k}{x^k}\)

Từ đó ta có: \({a_0} = C_n^0{\left( { - 2} \right)^0} = 1,\,\,{a_1} = C_n^1{\left( { - 2} \right)^1} =  - 2n;\,\,{a_2} = C_n^2{\left( { - 2} \right)^2} = {{n\left( {n - 1} \right)} \over 2}.4 = 2n\left( {n - 1} \right)\)

\(\eqalign{  & {a_0} + {a_1} + {a_2} = 71 \Leftrightarrow 1 - 2n + 2n\left( {n - 1} \right) = 71  \cr   &  \Leftrightarrow 2{n^2} - 4n - 70 = 0 \Leftrightarrow \left[ \matrix{  n = 7\,\,\,\,\,\,\,\left( {tm} \right) \hfill \cr   n =  - 5\,\,\,\,\left( {ktm} \right) \hfill \cr}  \right.  \cr   &  \Rightarrow {a_5} = C_7^5{\left( { - 2} \right)^5} =  - 672. \cr} \)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com