Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Với mọi số nguyên dương n, tổng \({S_n} = {n^3} + 11n\) chia hết cho

Câu hỏi số 219345:
Vận dụng

Với mọi số nguyên dương n, tổng \({S_n} = {n^3} + 11n\) chia hết cho

Đáp án đúng là: A

Quảng cáo

Câu hỏi:219345
Phương pháp giải

Thử một giá trị bất kì của n thỏa mãn n là số nguyên dương và dự đoán kết quả.

Chứng minh kết quả vừa dự đoán là đúng bằng phương pháp quy nạp toán học.

Giải chi tiết

Với n = 1 ta có: \({S_1} = 1 + 11 = 12\), không chia hết cho 9 nên loại đáp án C.

Với n = 2 ta có \({S_2} = {2^3} + 11.2 = 30\) không chia hết cho 4 và 12 nên loại đáp án B và D.

Ta sẽ chứng minh \({S_n} = {n^3} + 11n\) chia hết cho 6 với mọi số nguyên dương n.

Giả sử khẳng định trên đúng đến n = k, tức là \({S_k} = {k^3} + 11k\) chia hết cho 6, ta chứng minh khẳng định trên đúng đến n = k + 1, tức là cần chứng minh \({S_{k + 1}} = {\left( {k + 1} \right)^3} + 11\left( {k + 1} \right)\) cũng chia hết cho 6.

Ta có: \({S_{k + 1}} = {\left( {k + 1} \right)^3} + 11\left( {k + 1} \right) = {k^3} + 3{k^2} + 3k + 1 + 11k + 11 = {k^3} + 11k + 3{k^2} + 3k + 12 = \left( {{k^3} + 11k} \right) + 12 + 3\left( {{k^2} + k} \right)\)

Có: \({k^3} + 11k\) chia hết cho 6 (giả thiết quy nạp), 12 chia hết cho 6, ta cần chứng minh \(3\left( {{k^2} + k} \right) = 3k\left( {k + 1} \right)\) chia hết cho 6.

k và k + 1 là 2 số nguyên dương liên tiếp nên \(k\left( {k + 1} \right)\,\, \vdots \,\,2 \Rightarrow 3k\left( {k + 1} \right)\,\, \vdots \,\,2,\) kết hợp với \(3k\left( {k + 1} \right)\,\, \vdots \,\,3\) và 2; 3 là 2 số nguyên tố cùng nhau nên \(3\left( {{k^2} + k} \right) = 3k\left( {k + 1} \right)\) chia hết cho 3.2 = 6.

Vậy \({S_{k + 1}} = {\left( {k + 1} \right)^3} + 11\left( {k + 1} \right)\) cũng chia hết cho 6 hay \({S_n} = {n^3} + 11n\) chia hết cho 6 với mọi số nguyên dương n.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com