Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Với mọi số nguyên dương n > 1. Bất đẳng thức nào sau đây đúng?

Câu hỏi số 219346:
Vận dụng

Với mọi số nguyên dương n > 1. Bất đẳng thức nào sau đây đúng?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:219346
Phương pháp giải

Thử một giá trị bất kì của n thỏa mãn n là số nguyên dương và dự đoán kết quả.

Chứng minh kết quả vừa dự đoán là đúng bằng phương pháp quy nạp toán học.

Giải chi tiết

Với n = 2 ta có: \({1 \over {2 + 1}} + {1 \over {2 + 2}} = {7 \over {12}} \Rightarrow \) Loại được các đáp án A, B, C. Ta chứng minh \({1 \over {n + 1}} + {1 \over {n + 2}} + ... + {1 \over {2n}} > {{13} \over {24}}\) đúng với mọi số nguyên dương n > 1.

Bất đẳng thức đúng với n = 2. Giả sử bất đẳng thức đúng đến n = k, tức là  \({1 \over {k + 1}} + {1 \over {k + 2}} + ... + {1 \over {2k}} > {{13} \over {24}}\), ta chứng minh bất đẳng thức đúng với n = k + 1, tức là cần phải chứng minh \({1 \over {k + 2}} + {1 \over {k + 3}} + ... + {1 \over {2\left( {k + 1} \right)}} > {{13} \over {24}}\)

Ta có:

\(\eqalign{  & {1 \over {k + 2}} + {1 \over {k + 3}} + ... + {1 \over {2\left( {k + 1} \right)}} = {1 \over {k + 2}} + {1 \over {k + 3}} + ... + {1 \over {k + 1 + k - 1}} + {1 \over {k + 1 + k}} + {1 \over {k + 1 + k + 1}}  \cr   &  > {{13} \over {24}} - {1 \over {k + 1}} + {1 \over {2k + 1}} + {1 \over {2k + 2}}. \cr} \)

Cần chứng minh \( - {1 \over {k + 1}} + {1 \over {2k + 1}} + {1 \over {2k + 2}} > 0\)

Ta có:

\(\eqalign{  &  - {1 \over {k + 1}} + {1 \over {2k + 1}} + {1 \over {2k + 2}} = {{ - 4{k^2} - 6k - 2 + 2{k^2} + 4k + 2 + 2{k^2} + 3k + 1} \over {\left( {k + 1} \right)\left( {2k + 1} \right)\left( {2k + 2} \right)}}  \cr   &  = {{k + 1} \over {\left( {k + 1} \right)\left( {2k + 1} \right)\left( {2k + 2} \right)}} = {1 \over {\left( {2k + 1} \right)\left( {2k + 2} \right)}} > 0  \cr   &  \Rightarrow  - {1 \over {k + 1}} + {1 \over {2k + 1}} + {1 \over {2k + 2}} > 0  \cr   &  \Rightarrow {{13} \over {24}} - {1 \over {k + 1}} + {1 \over {2k + 1}} + {1 \over {2k + 2}} > {{13} \over {24}} \cr} \)

Bất đẳng thức đúng với n = k + 1.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com