Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm hệ số của \({x^6}\) trong khai triển \({\left( {{1 \over x} + {x^3}} \right)^{3n\, + \,1}}\) với \(x \ne

Câu hỏi số 219523:
Vận dụng

Tìm hệ số của \({x^6}\) trong khai triển \({\left( {{1 \over x} + {x^3}} \right)^{3n\, + \,1}}\) với \(x \ne 0,\) biết \(n\) là số nguyên dương thỏa mãn điều kiện \(3C_{n\, + 1}^2 + n{P_2} = 4A_n^2.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:219523
Phương pháp giải
Tìm \(n\) bằng các công thức \({P_n} = n!;\,\,A_n^k = {{n!} \over {\left( {n - k} \right)!}}\) và \(C_n^k = {{n!} \over {\left( {n - k} \right)!.k!}}.\) Sử dụng công thức tổng quát \({\left( {a + b} \right)^n} = \sum\limits_{k\, = \,0}^n {C_n^k} .{a^{n\, - \,k}}.{b^k}\,\,\buildrel {} \over \longrightarrow \) Tìm hệ số của số hạng cần tìm.
Giải chi tiết

Điều kiện: \(n \ge 2.\) Ta có \(3C_{n\, + 1}^2 + n{P_2} = 4A_n^2 \Leftrightarrow 3.{{\left( {n + 1} \right)!} \over {\left( {n - 1} \right)!.2!}} + 2n = 4.{{n!} \over {\left( {n - 2} \right)!}} \Leftrightarrow {3 \over 2}n\left( {n + 1} \right) + 2n = 4n\left( {n - 1} \right)\)

\( \Leftrightarrow 3\left( {n + 1} \right) + 4 = 8\left( {n - 1} \right) \Leftrightarrow 3n + 3 + 4 = 8n - 8 \Leftrightarrow 5n = 15 \Leftrightarrow n = 3.\)

Với \(n = 3,\) theo khai triển nhị thức Newton, ta có

\({\left( {{1 \over x} + {x^3}} \right)^{10}} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} .{\left( {{1 \over x}} \right)^{10\, - \,k}}.{\left( {{x^3}} \right)^k} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} .{{{x^{3k}}} \over {{x^{10\, - \,k}}}} = \sum\limits_{k\, = \,0}^{10} {C_{10}^k} .{x^{4k\, - \,10}}.\)

Hệ số của số hạng chứa \({x^6}\) ứng với \(4k - 10 = 6 \Leftrightarrow k = 4\,\,\buildrel {} \over \longrightarrow \) Hệ số cần tìm là \(C_{10}^4 = 210.\)

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com