Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \(\widehat {ABC} = {60^0}\), tam giác SBC là tam giác đều có cạnh bằng 2a và hình chiếu vuông góc của S trên mặt phẳng (ABC) trùng với trung điểm của BC. Tính góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

Câu 229198: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \(\widehat {ABC} = {60^0}\), tam giác SBC là tam giác đều có cạnh bằng 2a và hình chiếu vuông góc của S trên mặt phẳng (ABC) trùng với trung điểm của BC. Tính góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

A. \({30^0}.\)       

B. \({45^0}.\)  

C. \({60^0}.\)  

D. \({90^0}.\)

Câu hỏi : 229198

Phương pháp giải:

Áp dụng phương pháp tìm góc giữa đường thẳng và mặt phẳng – hệ thức lượng trong tam giác vuông để giải quyết yêu cầu của bài toán

  • Đáp án : C
    (6) bình luận (0) lời giải

    Giải chi tiết:

    Gọi H là trung điểm của BC, suy ra \(SH \bot \left( {ABC} \right)\).

    Vì \(SH \bot \left( {ABC} \right)\) nên HA là hình chiếu của SA trên mp(ABC).

    Do đó \(\widehat {\left( {SA;\left( {ABC} \right)} \right)} = \widehat {\left( {SA;AH} \right)} = \widehat {SAH}\).

    ●  Tam giác SBC đều cạnh 2a nên \(SH = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 .\)

    ●  Tam giác ABC vuông tại A nên \(AH = \frac{1}{2}BC = a.\)

    Tam giác vuông SAH, có \(\tan \widehat {SAH} = \frac{{SH}}{{AH}} = \sqrt 3 \)\( \Rightarrow \widehat {SAH} = {60^0}\).

    Chọn C.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com