Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy AB, CD. Gọi I, J lần lượt là

Câu hỏi số 295875:
Vận dụng

 Cho hình chóp S.ABCD có đáy ABCD là hình thang với các cạnh đáy AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Điều kiện nào của AB và CD để thiết diện của hình chóp khi cắt bởi mặt phẳng (IJG) là hình bình hành?

Đáp án đúng là: D

Quảng cáo

Câu hỏi:295875
Phương pháp giải

Dựa vào các yếu tố song song xác định thiết diện.

Giải chi tiết

Qua G dựng EF song song AB (\(E \in SB,F \in SA\))

IJ là đường trung bình của hình thang ABCD \( \Rightarrow \left\{ \begin{array}{l}IJ//AB//CD\\IJ = \dfrac{{AB + CD}}{2}\end{array} \right.\)

Ta có:  \(\left\{ \begin{array}{l}IJ//AB\\AB//EF\end{array} \right. \Rightarrow IJ//EF \Rightarrow I,J,E,F\) đồng phẳng

\( \Rightarrow I,J,E,F,G\) đồng phẳng

\( \Rightarrow \left( {GIJ} \right) \equiv \left( {IJEF} \right)\)

Thiết diện của \(\left( {GIJ} \right)\) với hình chóp là hình thang \(IJEF,\,\left( {IJ//EF} \right)\)

Để thiết diện là hình bình hành thì \(IJ = EF\)\( \Leftrightarrow \dfrac{{AB + CD}}{2} = \dfrac{2}{3}AB\) (do \(\dfrac{{EF}}{{AB}} = \dfrac{{SE}}{{SB}} = \dfrac{{SG}}{{SM}} = \dfrac{2}{3}\))

\( \Leftrightarrow 3AB + 3CD = 4AB \Leftrightarrow AB = 3CD\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com