Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải phương trình \(\sqrt 3 \sin 2x + \cos 2x = 2\cos x\).

Câu hỏi số 295876:
Nhận biết

Giải phương trình \(\sqrt 3 \sin 2x + \cos 2x = 2\cos x\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:295876
Phương pháp giải

Phương trình dạng \(a\sin x + b\cos x = c\). Chia cả 2 vế cho \(\sqrt {{a^2} + {b^2}} \).

Giải chi tiết

Ta có:

\(\begin{array}{l}\,\,\,\,\,\sqrt 3 \sin 2x + \cos 2x = 2\cos x \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 2x + \dfrac{1}{2}\cos 2x = \cos x\\ \Leftrightarrow \sin \dfrac{\pi }{3}.\sin 2x + \cos \dfrac{\pi }{3}.\cos 2x = \cos x\\ \Leftrightarrow \cos \left( {2x - \dfrac{\pi }{3}} \right) = \cos x \Leftrightarrow \left[ \begin{array}{l}2x - \dfrac{\pi }{3} = x + k2\pi \\2x - \dfrac{\pi }{3} =  - x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{3} + k2\pi \\x = \dfrac{\pi }{9} + k\dfrac{{2\pi }}{3}\end{array} \right.\,\,\left( {k \in Z} \right)\end{array}\)

Vậy, phương trình đã cho có nghiệm \(x = \dfrac{\pi }{3} + k2\pi ,\,\,x = \dfrac{\pi }{9} + k\dfrac{{2\pi }}{3};\,\,k \in Z\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com