Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Ba người cùng bắn vào \(1\) bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích

Câu hỏi số 302624:
Vận dụng

Ba người cùng bắn vào \(1\) bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là \(0,8;\,\,0,6;\,\,0,5\). Xác suất để có đúng \(2\) người bắn trúng đích bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:302624
Phương pháp giải

Công thức xác suất \(P = \frac{{n(A)}}{{n(\Omega )}}\)

Để xác định số TH có đúng \(2\) người bắn trúng đích ta chia 3 TH

Chú ý khi \({A_1},{A_2}....{A_n}\) là các biến cố độc lập nhau ta có công thức nhân xác suất:

\(P\left( {{A_1} \cap {A_2}.... \cap {A_n}} \right) = P({A_1}).P\left( {{A_2}} \right)...P\left( {{A_n}} \right)\)

Giải chi tiết

Gọi \(X\) là biến cố: “có đúng \(2\) người bắn trúng đích”

Gọi \(A\) là biến cố: “người thứ nhất bắn trúng đích”\( \Rightarrow P\left( A \right) = 0,8;\;\;P\left( {\overline A } \right) = 0,2.\)

Gọi \(B\) là biến cố: “người thứ hai bắn trúng đích”\( \Rightarrow P\left( B \right) = 0,6;\;\;P\left( {\overline B } \right) = 0,4.\)

Gọi \(C\) là biến cố: “người thứ ba bắn trúng đích”\( \Rightarrow P\left( C \right) = 0,5;\;\;P\left( {\overline C } \right) = 0,5.\)

Ta thấy biến cố \(A,B,C\) là \(3\) biến cố độc lập nhau, theo công thức nhân xác suất ta có:

\(P\left( X \right) = P\left( {A.B.\overline C } \right) + P\left( {A.\overline B .C} \right) + P\left( {\overline A .B.C} \right) = 0,8.0,6.0,5 + 0,8.0,4.0,5 + 0,2.0,6.0,5 = 0,46.\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com