Cho CSN \(({u_n})\) thỏa: \(\left\{ {\begin{array}{*{20}{c}}{{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 11}\\{{u_1} +
Cho CSN \(({u_n})\) thỏa: \(\left\{ {\begin{array}{*{20}{c}}{{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 11}\\{{u_1} + {u_5} = \frac{{82}}{{11}}}\end{array}} \right..\) Tìm công bội và số hạng tổng quát của cấp số
Đáp án đúng là: C
Quảng cáo
Đưa dữ kiện đề bài về hết \({u_1}\) và \(q\) để giải từ đó tìm số hạng tổng quát của cấp số bằng công thức \({u_n} = {u_1}.{q^{n - 1}}\)
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












