Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giá trị của \(B = {\rm{lim}}\frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }}\) bằng:

Câu hỏi số 306067:
Vận dụng

Giá trị của \(B = {\rm{lim}}\frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }}\) bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:306067
Phương pháp giải

Nếu \({x_n} < {u_n} < {v_n}\) mà \(\lim \,\,{x_n} = \lim \,\,{v_n} = a \Rightarrow \lim \,\,{u_n} = a\)

Giải chi tiết

Ta có: \(n! < {n^n} \Rightarrow \sqrt[n]{{n!}} < \sqrt[n]{{{n^n}}}\)

  \( \Rightarrow 0 < \frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }} < \frac{{\sqrt[{\rm{n}}]{{{n^n}}}}}{{\sqrt {{n^3} + 2n} }} = \frac{n}{{\sqrt {{n^3} + 2n} }}\)

Mà \(\lim \,\,0 = 0\,;\;\,\,\lim \,\frac{n}{{\sqrt {{n^3} + 2n} }} = \lim \frac{{\frac{1}{{{n^{\frac{3}{2}}}}}}}{{\sqrt {1 + \frac{2}{{{n^2}}}} }} = 0\) (do bậc tử nhỏ hơn bậc mẫu)

\( \Rightarrow \lim \frac{{\sqrt[n]{{n!}}}}{{\sqrt {{n^3} + 2n} }} = 0 \Leftrightarrow B = 0.\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com