Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho các số thực a, b thỏa \(\left| a \right| < 1;\;\;\left| b \right| < 1\). Tìm giới hạn \(I = \lim

Câu hỏi số 306068:
Vận dụng

Cho các số thực a, b thỏa \(\left| a \right| < 1;\;\;\left| b \right| < 1\). Tìm giới hạn \(I = \lim \frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\).

Đáp án đúng là: C

Quảng cáo

Câu hỏi:306068
Phương pháp giải

Nếu \(\left| q \right| < 1\) thì \(\mathop {\lim }\limits_{n \to  + \infty } {q^n} = 0\)

Giải chi tiết

Ta có \(1,\;a,\;{a^2},\;...,\;{a^n}\)  là một cấp số nhân có công bội \(a \Rightarrow 1 + a + {a^2} + ... + {a^n} = \frac{{1 - {a^{n + 1}}}}{{1 - a}}.\)

 Tương tự:   \(1 + b + {b^2} + ... + {b^n} = \frac{{1 - {b^{n + 1}}}}{{1 - b}}\)

\( \Rightarrow \lim I = \lim \frac{{\frac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\frac{{1 - {b^{n + 1}}}}{{1 - b}}}} = \lim \left( {\frac{{1 - {a^{n + 1}}}}{{1 - a}}.\frac{{1 - b}}{{1 - {b^{n + 1}}}}} \right) = \lim \left( {\frac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}}.\frac{{1 - b}}{{1 - a}}} \right) = \frac{{1 - b}}{{1 - a}}.\)

(Vì \(\left| a \right| < 1,\;\;\left| b \right| < 1\)\( \Rightarrow \lim {a^{n + 1}} = \lim {b^{n + 1}} = 0\)).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com