Giới hạn \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}}
Giới hạn \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right)\) là một phân số tối giản \(\frac{a}{b}\left( {b > 0} \right)\). Khi đó giá trị của \(b - a\) bằng:
Đáp án đúng là: D
Quảng cáo
Tính \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}}} \right)\) bằng cách phân tích:
\(\begin{array}{l}\frac{1}{{3{x^2} - 4x - 4}} + \frac{1}{{{x^2} - 12x + 20}} = \frac{1}{{\left( {x - 2} \right)\left( {3x + 2} \right)}} + \frac{1}{{\left( {x - 2} \right)\left( {x - 10} \right)}}\\ = \frac{{x - 10 + 3x + 2}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{{4\left( {x - 2} \right)}}{{\left( {x - 2} \right)\left( {3x + 2} \right)\left( {x - 10} \right)}} = \frac{4}{{\left( {3x + 2} \right)\left( {x - 10} \right)}}.\end{array}\)
Đáp án cần chọn là: D
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












