Cho \(m\) và \(n\) là các số nguyên dương phân biệt. Giới hạn \(\mathop {\lim }\limits_{x \to 1}
Cho \(m\) và \(n\) là các số nguyên dương phân biệt. Giới hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{\sin \left( {x - 1} \right)}}{{{x^m} - {x^n}}}\) bằng:
Đáp án đúng là: C
Quảng cáo
Biến đổi dựa vào công thức: \(\frac{{\sin \left( {x - 1} \right)}}{{{x^m} - {x^n}}} = \frac{{\sin \left( {x - 1} \right)}}{{x - 1}}.\frac{{x - 1}}{{{x^m} - {x^n}}}\)
Dùng giới hạn:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{{x^m} - {x^n}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^m} - 1} \right) - \left( {{x^n} - 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {{x^{m - 1}} + {x^{m - 2}} + ... + x + 1} \right) - \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ... + x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{x^{m - 1}} + {x^{m - 2}} + ... + x + 1} \right) - \left( {{x^{n - 1}} + {x^{n - 2}} + ... + x + 1} \right)}}{1} = m - n.\end{array}\)
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












