Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối lăng trụ tam giác đều \(ABC.A'B'C'\) có chiều cao là a và \(AB' \bot BC'\). Thể tích lăng

Câu hỏi số 320276:
Vận dụng

Cho khối lăng trụ tam giác đều \(ABC.A'B'C'\) có chiều cao là a và \(AB' \bot BC'\). Thể tích lăng trụ là

Đáp án đúng là: A

Quảng cáo

Câu hỏi:320276
Giải chi tiết

Gọi M là trung điểm của A’C’, O là tâm của hình chữ nhật ABB’A’.

Do \(OM//BC',\,\,AB' \bot BC'\) nên \(OM \bot AB'\)

Gọi độ dài cạnh đáy của lăng trụ là x.

Ta có: \(BM = \dfrac{{x\sqrt 3 }}{2}\), \(OM = \dfrac{{BC}}{2} = \dfrac{{\sqrt {{a^2} + {x^2}} }}{2}\), \(OB' = \dfrac{{AB'}}{2} = \dfrac{{\sqrt {{a^2} + {x^2}} }}{2}\)

\( \Rightarrow \Delta OB'M\) vuông cân tại O

\(\begin{array}{l} \Rightarrow MB' = \sqrt 2 .OB' \Leftrightarrow \dfrac{{x\sqrt 3 }}{2} = \sqrt 2 .\dfrac{{\sqrt {{a^2} + {x^2}} }}{2}\\ \Leftrightarrow 3{x^2} = 2{a^2} + 2{x^2} \Leftrightarrow {x^2} = 2{a^2} \Leftrightarrow x = a\sqrt 2 \end{array}\)

Diện tích tam giác ABC là: \(S = \dfrac{{{{\left( {a\sqrt 2 } \right)}^2}\sqrt 3 }}{4} = \dfrac{{{a^2}\sqrt 3 }}{2}\)

Thể tích khối lăng trụ là:  \(V = Sh = \dfrac{{{a^2}\sqrt 3 }}{2}.a = \dfrac{{{a^3}\sqrt 3 }}{2}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com